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J. Phyr: Condens. Malter 5 (1593) 679-696. Printed in the UK 

Phonon-induced decay rates for quasiparticle cyclotron orbits 
in simple metals: analytical approximations and models 

W E Lawrencet 
Depanment of Phyics, Ohio State University, Columbus, OH 43210, USA 

-Ned 27 June 1992, in h a 1  form 9 Octoter 1992 

Abstrael A bmalism is developed [or sludying the temperature dependence of phonon- 
induced quasipanide scattering r a t s  averaged over qclotron orbits in simple metals. 
The underlying model is expressed in e m s  of analytic forms for the spectral distribution 
a Z F ( w ) ,  from which Ihe scattering rate v l ( T )  is easily computed. The material- 
dependent parameters upon which Ihe results depend are Ihe inter-sheet threshold 
wavevedor Q1. orbit caliper (22, Uansveme and longitudinal sound velocilies q and 
CL, and a parameter R expwing the imponance of h e  momentum dependence of 
the pseudopotential form faclor, all of which are known in many cases. The orbitally 
averaged scattering rales exhibit a regime of dependence that is not assccialed with 
individual point rates, above a characteristic temperature TI - Q 1 q .  

1. Intmduction 

Theoretical treatments of the electron-phonon interaction range from the very simple, 
as in the jellium model, to the very complex, involving detailed computations of 
the band structure and phonon spectra (see for example Pickett 1989, ch X). An 
intermediate level of treatment was developed for the electrical resistivity (Lawrence 
and Wdkins 1972) (LW), and also applied to quasiparticle scattering rates T-’ (Wagner 
and Bowers 1978) (w). At this level one finds analytical formulae for the scattering 
rates, for example, which exhibit qualitatively different behaviour from that of the 
jellium model. Instead of an isotropic T3 dependence, one finds enormous anisotropy, 
with dependence guaranteed only at very low temperatures; departures may set 
in at temperatures as low as 1 K or so. 

The purpose of this paper is to apply the same level of treatment to orbital 
averages of scattering rates, as measured in the radiofrequency size effect (RFSE) (see 
a current review by Gasparov and Huguenin (1992)), and to show in detail how the 
temperature dependence relates to the geometry of the orbit. Among other things, 
we will explore the temperature regime over which the contribution$ predicted 
by Lawrence d al (1986) (LCS) should be detectable. While the anisotropy has k e n  
found in many experiments, such departures from T3 dependence attributable to the 
electron-phonon contribution have only been seen in recent RFSE data (Probst el a1 
1980, Jaquier et al 1991). 

t Permanent address: Department of Physics, Danmouth College, Hanover, NH 03755, USA. 
$ This electron-phonon Tz contribution is distinguishable from the electmn4edron one by its limited 
temperature redme and its anisotropy, as discussed by Jaquier er d (1991). 
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It is convenient to describe the present treatment in terms of the spectral density 
function a2F(w) .  In these terms, the decay rate of a quasiparticle in the state k on 
the Fermi surface (e.g. WB, equation (224)) may be written as 

m 

T-' (k ,T)  = 4111 dwaZF(k ,w) [ s inh(hw/ks~) ] - '  (1.1) 
0 

where 

is the effective density of phonon states for scattering an electron from state k, and 

is the squared matrix element for scattering by absorption (emission) of a phonon 
with wavevector rtq = k' - k, frequency wqo and polarization Z,,. The integral in 
equation (1.2) is over the Fermi surface, and p is the mass density of the metal. 

The definition (1.1) applies to orbital averages r as well as to points k. The 
appropriate orbital average (for either 7-l or dF') is 

(1.5) 

where U = ~ ( k )  is the unrenormalized or 'band' velocity. The renormalization of the 
decay rate (due principally to the electron-phonon interaction) is accounted for by 

.rre,(k) = %rc(k)P + X(k)l 

and of its orbital average by 

7ren(r) = 7bare(r)[1+ (1.6) 

where X(r) and X(k) are related by equation (1.5). Since in fact X ( k )  is relatively 
isotropic, the Fermi-surface averages tabulated by Grimvall (1976) usually suffice. 

As stated, equation (1.1) refers to the scattering rate evaluated at the Fermi 
energy. In the experimental data, complications may arise from the energy 
dependence of 7-l or 6rom reduced scattering 'effectiveness', depending upon 
experimental parameters such as the radiation frequency and the sample thickness. 
These matters have been dealt with successfully by Stubi el a1 (1988), and we shall 
not be concerned with them here. 
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1.1. Characterislic dimensions and regimes 

This paper is organized by defining the regime of Tz behaviour in tenns of orbit 
dimensions. Since the dependence arises from Umklapp scattering between free- 
electron-like regions of the Fermi surface, its regime is limited below by the continuity 
of the Fermi surface at zone boundaries (the essential band-structure effect), which 
guarantees that 7-l  - T3 as T + 0. The crossover is determined by a characteristic 
wavevector QI that defines the scale of Fermi-surface distortions near the zone 
boundary (G). For definiteness we take this to be the ‘inter-sheet threshold’ pictured 
in figure 1, 

where V(G) is the effective pseudopotential parameter in a two orthogonalized 
planewaves (2-OPW) description of local Fermisurface shape and v1 is the F e d  
velocity at the zone boundary intersection. xG is half the vertex angle of the orbit. 

Figure 1. llmshold wevector Q1 for inter-sheet 
scattering near a vertex 

Flgui-e 2 Minimum calipers Qr for (a) equilateral 
triangle, (b) lens and (c) isosceles triangle. In (c), 
Qu and Qm appiy to the Iwo legs attached to the 
upper (GI) vertex. 

The quadratic regime is limited ubove by a cusp in the Umklapp scattering phase 
space. As shown in the next section and pictured in figure 2, this cusp occurs at a 
minimum caliper Q2 of the orbit; for example, the width of a lens or the height@) 
of a triangle. In the case of an isosceles triangle, there are two Q1 and two Qz 
values. In the absence of such multiplicities, there are three regimes separated by 
the two characteristic wavevectors, Q1 and Qz, or the corresponding frequencies or 
temperatures 

kBT; = ha;  = h 9 Q ;  ( i  = 1,2) (1.8) 
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where 9 is a transverse sound velocity. The three characteristic frequency 
dependences, to be derived in the next two sections, are roughly a Z F ( r , w )  - wz N w 
and - 1 for low, intermediate and high frequencies, respectively. The high-frequency 
regime is interesting only because it limits the intermediate regime. In orbits with 
multiple Q1 and Qz values, a2F(r,w) is a superposition of contributions with 
overlapping regimes. 

In the next section we discuss the intermediate and high-frequency regimes (and 
derive Q2) by using the 1-oPw model and ignoring Fermi-surface distortions near 
zone boundaries (except insofar as they define the orbit). The Z-OPW model is 
then introduced in section 3 to discuss the low-frequency regime and complete the 
construction of a model a Z F  function. Corrections to this basic model are discussed 
in section 4, and representative results shown in section 5. 

2 One orthogonalized plane-wave treatment and 

The main result of this treatment has already been presented in m for the case of 
hiangular orbits in Cd. We review and generalize this result in the orZF language. 
The matrix elements for normal and Umklapp scattering are, respectively, 

(2.14 

(2.16) 

where q I k' - k is the phonon wavevector (reduced to the first Brillouin zone in the 
Umklapp case), V ( q )  may be set to V(O), and we temporarily set V(g+G) -+ V(G). 
Corrections to the latter may be significant, and these are taken up in section 4. 

If the initial state k is sufficiently close to a zone boundary, then the finalstate 
integration for a Z F ( k , w )  traces out two circular regions (normal and Umklapp, as 
shown in figure 3), and a Z F  is the sum of 

a*FN(k,w) = (s?r2ApvF)-'vZ(o)WZ/c4, ( 2 . k )  

and 

a2Fu(k,w) = (8r2hpvF)-'GzVz(G)(1 + g,,/kF)-' 

x ;{CL2+ - cL~u)[sin~xG + ( ~ ~ n , , / w ) ~ ~ ( 2 ~ , ) 1  

+ q2O(w - wU)[l + mS2xG - (wo/W)ZMS(2XG)1~. (2.24 

The normal contribution is from longitudinal phonons only, as dictated by equation 
(2.1~). The Umklapp contribution vanishes for w < %qu, where the 'Umklapp 
threshold' go is the distance from k to the remapped sphere. The derivation of 
the full expression (221) is straightfomard and too lengthy to present heret. The 
presence of the step discontinuities is a purely geometrical effect. The gu/kF term 
gives the Fermi-surface curvature correction to the density of final states for Umklapp 

t Available h m  the author a1 the permanent address listed are delails d derivations not presented in 
the e l ,  series aprasions for the scattering rate, and mmpukr d e  lo evaluate these apressions. 
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0 -* ' 

'. 

F%gtm I (a) CIrcular regions of normal and 
Umklapp mntributions U) a 2 F ( k ,  w )  for w > 
cqo, and (b) orbit segment 7, showing maximum 

Figure 4 Geometry for W P W  lreatmml at low w: 
(a) dimensionless nriable q for Fermi-surface paint 
k; (6) and (c) locus of L a 1  states k' is circular for 
w - 0. Umklapp threshold on the segment 

scattering. This term may be dropped since it is unimportant compared with other 
corrections that will be calculated in section 4, Note that the Umklapp term simplifies, 
if CL = CT I c, to 

rYz&(k,w) = (8r2tipvFC2)-'GzV2(G)B(w - Cq0)- (23) 

Let us proceed with this simplification, and generalize at the end of this section. 

boundary (see figure 3(b)) is equivalent to the average over go values in 0 < 4;": 
The average of equation (2.3) over an orbit segment y that touches the zone 

a 2 F u ( r , w )  = ( 8 r Z f i p v F ~ 3 q u ~ ) - ' G 2 V 2 ( G ) m i n ( w , c q ~ ) .  (2.4) 

Orbit averages for the orbit types shown in figure 2 may be constructed from this 
expression. The lens average is identical to that of its irreducible quarter segment, 
with qF = Qz the width of the lens. The equilateral-triangle average is equal to 
that of its irreducible one-sixth segment, although the naive application of equation 
(2.4) to this segment gives the wong results if one fails to account for the presence 
of hvo zone boundaries across which Umklapp can occur from each point, one 
with 0 < qo < fQ, and the other with iQz < q0 < QT It is much simpler to 
apply equahon (24) to an entire leg (where clearly 0 < go < Q2 for both of the 
relevant mne bondaries), and to double the expression to m u n t  for the two kinds 
of Umklapp. So the orbit averages for the equilateral triangle (ET) and lens are 
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where Qz is defined for each orbit in figure 2 The isosceles-triangle average may be 
computed as the sum of leg averages, each weighted by the ratio of leg length Q, to 
total orbit length (or perimeter) QP Each leg average is the sum of two expressions 
of the type (2.4) in which different Qz values may appear. Formally, 

Q, 1 azFu(I') = e- -min(w,cQz)g(G) 
Y Qr G(y) Qz 

where y is the leg index, the interior sum is over the two vertices attached to 
the leg y, and g(G) is the full expression (2.4) for a Z F ( y )  except for the Qz- 
(or $-)-dependent factors that are made explicir Now according to figure 2, 
(Q,/Q2) = cosec(2xG) depends only on the vertex, so that we may switch the 
order of summation and write 

The interior sum is over the two legs attached to the vertex G, for which Qz may take 
on different values, as in the isosceles triangle (IT) G, vertices. With the exception of 
a single equation, we shall not be concerned with such cases in this paper. Therefore 
we drop the y sum and multiply by 2, with the understanding that the function 
min(w, cQz) would be averaged over the two values of Qz if these were different. 
The result for any orbit is then simply 

aZFu(r,w) = 2(8x2?ipvFc?Q,)-' ~cosec(2;yG)GzV2(G)min(w,cQ2) .  (26) 
G 

Now to dispose of the single exception, we apply equation (2.6) to the isosceles 
triangle of figure 2, with the result 

aZFu(r,w) = 2(8n2?ip~Fc?Qr)-1{wsec(2~1)G~VZ(G,)[min(w, cQX) 

+ min(w,cQB)] + cosec(2~~)G~V~(G~)min(w,cQ,)} IT. 

(2.7) 

As a Iinal consistency check, we may recover the equilateral-triangle and lens cases 
trivially from equation (2.6) in the form 

lens. a2Fu(l?,w) = (:) (8nz?ipvF~Qr)-'cose~(2~z)GZV2(G) min(w, cQz) 

(2.8) 

Clearly the ET result is a special case of equations (26) and (2.7), but it is also 
equivalent to equation (2.5) since Qr = 3Q, = 3Qzcosec(2~,). The lens cases of 
equations (28) and (25) are also equivalent in the limit where Qz < ICF, although 
for the lens geometry this requires small x so that cosec(2x) N ( 2 ~ ) ~ ~ .  TJ the 
extent that curvature corrections enter, the last equation (2.8) is the correct one at 
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low w, with Bequency-dependent corrections expressed by the (unimportant) qu/k ,  
term in equation (2.26). 

The corresponding orbitally averaged decay rates are given by series expansions 
(LCS, equation (S)), which reduce to simple analytical forms far above or belaw T,. 
The low-temperature form corresponding to equation (28) is 

RI above T, a linear dependence is approached. 
For the more general case cL # q we reconsider the qu average leading from 

the point a 2 F  function (equation (226)) to its orbit averages (equation (2.4)). 
For w < ?Qz, remarkably, the XGdependent terms again disappear, resulting in 
equation (24) but with the replacement 

(w < DTQZ) c-3 --* z -3 + &-3 
3% 3 L 

For w > ?Qz there is a small additional frequency-dependent correction, which 
vanishes at w = +QZ This has negligible effect on r-' in the regime T 5 T,, 
which applies to the experimental results, and so we ignore it. The general result for 
a2F(I',w) incorporating the upper crossover is thus given by equation (24) with 

~ - ~ m i n ( w , c Q , )  + f+3min(w,qQ,) + f ~ L ~ m i n ( w , ~ ~ Q , ) .  (210) 

Since q 5 $cL typically, the transverse contributions to a2Fu(r ,w)  and to 
ril(r,  T) dominate the longitudinal by about an order of magnitude; longitudinal 
phonons contribute essentially only through normal processes. 

3. ' b o  orthogonalized plane-waves treatment and R, 

The smoothing of cusps at zone boundaries converts the w dependence of 
dFu( I ' ,w)  to wz dependence in the limit w + 0, with the characteristic c~ossovc'i 
frequency a1 = q Q ,  determined by the scale of Fermi-surface distortion. The 2-OPW 
model provides a simple expression for the coefficient of wz. 

The state $k is described near a zone boundary ( G )  by mixing coefficients a and 
p for I-oPw states k and k - G, respectively. The matrix element (equation (1.4)) 
becomes 

Mkqi, = C q r .  [qV(O)(a'a + P'P) + (n - G)V(P- G)P'a 

+ (n + G)V(n + G)a'PI (3.1) 

and the bopw expressions (equations ( 2 l a , b ) )  are recovered from this when b and k' 
are far removed from zone boundaries, where the mixing coefficient factors approach 
either zero or unity (a'a + p'p to select normal geometry and the other to select 
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Umklapp). In fact a’a + p’p also approaches unity near zone boundaries in the limit 
q -+ 0, indicathg that the contribution to a Z F  from longitudinal phonons (arising 
almost exclusively from the V(0) term in equation (3.1)) is not changed substantially 
by band-structure effects at small w. The corresponding contribution to T-’ is thus - 

Accordingly, we may focus on the other terms, which contribute almost exclusively 
through transverse phonons, and which survive far from zone boundaries only in the 
Umklapp geometry. The important terms in a lhylor expansion in the explicit q 
dependence are 

(and - cL4) over the entire temperature range of interest. 

MEp = ~ , . , . [ G V ( G ) ( C Y ’ P - , ~ ’ ~ ) + G ( ~ . G ) V ‘ ( G ) ( ~ ‘ P +  P‘a)] .  (3.2) 

Both terms lead to a linear q dependence for MEk, in the limit of small q (which in 
turn leads to or2F - U’). For a fixed (and small) value of q = Ik’ - kl, the mhting 
coefficient factors are sharply peaked for IC (and k‘) near the zone boundary, and 
drop to zero as they move away. It is therefore convenient to express these factors 
in terms of a dimensionless ‘distance’ from the zone boundary (figure 4(a)) as was 
introduced by LW: 

9 = h’G-(k  - iG)[2mlV(G)I]-’. (3.3) 

Keeping just the leading term - O[V(G)] in equation (3.2) for now, this leads to 
lim,,,(dp - @‘a) = hzq - G[4mV(G)(q2 + 1)I-l and hence 

whose maximum value (at 11 = 0) is, remarkably, independent of V(G), a point 
noted by LW and WB. The cancellation of the V(G) factor at the zone boundary 
is caused by the rapid variation of mixing mefficients [note that a’P - @‘a N 

( k b  - kG)Pza(a/p) /8kG].  The point-dependent a’F(k ,w)  reduces at small w 
to a circular average in the plane of the Fermi surface at k (figures 4(b) and (c)). 
Keeping just the transverse modes, we have 

~ ( e q s * G ) ’ =  G’[l-(G-G)’] 
T 

and 

lim crZF(k,w) = ( S ~ ’ h ~ v ( k ) ~ ) - ’ ~ z ( ( q . G ) z -  ( q - G ) 4 ) +  
w-U 

x (hZG2/4m)’(gZ + 1)-’. 0.5) 
Let us make explicit the q dependences of the velocity and the circular averages: 

v(k) = vp($ + sin’ x)’/’(q’ + I)-”’ (3.64 

( ( 6 . ~ ) ~ ) ~  = ~ s i n 2 ~ ( ~ ’ + 1 ) ( q 2 + s i n Z x ) - ’ =  f(i+yZsin’x)(1+y2)-’ ( 3 . ~ )  

(3 .k )  ((G.s)*) = ~ ( 1 + y ’ s i n Z x ) ’ ( 1 + y )  a -2 + 
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where the trivial rescaling (note figure 4(u)) 

q I ysinx (3.7) 

will simplify some of the expressions. The velocity achieves its minimum value uF sin x 
at the zone boundary and approaches vF at large (q(. The angular average factor in 
equation (3.5) is equal to 1/8 at q = y = 0, and may increase or decrease slightly at 
non-zero q, depending upon the value of x. Equation (3.5) now becomes 

x ( I +  y2)S/Z(1+ y2sinz~G)1~z]-1[1 + y2(4-3sinZxo)]. 0.8) 

This in turn leads to the asymptotic cubic dependence of the point scattering rate 

As noted by w, the maximum value of T - ~ ,  achieved at the zone boundary, 
is independent of V ( G ) ,  and is at least an order of magnitude larger than the 
(approximately isotropic) normal contribution, obtained from equation (2.k). 

The orbital average of equation (3.8) or (3.9) may be expressed as a sum of y 
integrals, one for each intersected zone boundary. Making a separate transformation 
near each intersection, 

(3.10) dk 

where equations (3.3), (3.6~) and (3.7) were used, we lind 

where the integral 12) is of order unity and only weakly dependent on xG since we 
have factored out the main dependence (cosecx,). In particular, I g )  is a special 
case of 

I t )  = J dy (1 + yZsin2 XG)(n-')/2 [1+yz(4-3sin2xG)]  (3.12) 
4(1+ yz)5/2 

that will be useful later. mica1 values are listed in table 1. Again, T-'(r' ,T) is 
obtained from equation (3.11) by an equation like (3.9). Comparison of equations 
(3.8) and (3.11) shows that the local maxima of ~ - ' ( k ,  T) near zone boundaries have 
widths proportional to IV( G)I, as expected. 

The separation into distinct zone boundary intersection regions is valid as long 
as Q1 and Qz are not too close, because the integrand falls rapidly to zero with 
increasing IyI. By the Same token, the limits of integration of 1, may be taken as 
fm. 
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lhbk 1. Geometrical parameters a (equation (3.14)), b (equation (4.10)) and oz 
(equation (43)) and integrals I$') (equation (3.12)) for typical values of the vertex 
half-aogle x .  Corrections ta a from the momentum dependence of the paeudoplential 
are given by equation (4.8). 

x (deg) a b w x p  fig Ig) 
25 0.87 1.8 0.27 0.79 0.91 1.16 
30 1.2 22 a375(3/8) o m  0.g150 i .1~ 
35 1.7 zs a49 0.69 aa 1.18 
40 13 28 0.62 0.64 0.79 l.17 

Having now exhawted the regimes in which reasonable analytical approximations 
can be obtained, we construct a model for the w - Cll region by interpolating in 
the manner of LW. Here, a 2 F ( r , w )  is the appropriate vehicle; we w u m e  that it 
comprises equal parts interband and intraband contributions for w > SZ,, that the 
interband a t s  off abruptly below S I , ,  and that the remaining intraband contribution 
is the lesser of the two asymptotic forms, i.e. equation (3.11) at lower frequencies 
and equation (2.6) above. The resulting function is plotted in figure 5 and may be 
written formally as 

a Z F ( r , w )  = $(8?rZhpvF4Qr)-' Ccosec(2xG)GZV2(G)[B(W - a,) min(w,Cl,) 

where min(a,p,r) takes the values of its smallest argument (as a function of w) 
and ~ f i ,  is the intraband crossover frequency, with 

(3.14) 

of order unity. In figure 5 this is set to 1.2, appropriate for an equilateral-triangle 
orbit where x = XIo (table 1). In the general case, R, (and a )  may depend upon G, 
and SZ2 may depend upon both G and the leg attached to the vertex. In such cases 
the Win' functions must be averaged over the two 'leg' values of a2, as in equation 
(2.6). 

w 

Flgnre 5. nte interpolated d F ( I ' , w )  function 
shaving (schematically) the interband cut-~ff at 
Y = RI,  the intraband mssover at frequencies 
slightly above RI, and the cusp in UmMapp phase 
space at R2. 
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0 2 I 8 B 0 0.2 0.4 0.6 0.8 I 

T/Ti TAT1 

Figure d Scattering rate normalized to the asymptolic form A F  (equalion (3.15)) 
showing (a) its approximale quadratic dependence for T > TI and (b) its cubic 
and exponential dependences for T < TI. The dotled curye indicate the interband 
contribution to both full curves in (6). The a w e s  in (b) are almost unaffecled by the 
choice of T2ITl. and those in ((I) depend little m the choice of x for T > TI. 

The resulting temperature dependence of the orbitally averaged scattering rate 
T-'(I',T) is shown in figure 6(a) for a variety of ratios T,/T, (= Q,/Q,) to 
demonstrate the existence of the intermediate regime in which T-' - 2''. The plot is 
made with reference to a nominal T' coefficient A, which is defined by the asymptotic 
limit 

= $ T NG ( 8iipvF 4 Qr)-'cosec( 2xo ) Gz Vz ( G) ( kBT/ li)2 (3. U) 

where N ,  is the number of vertices, assumed equivalent for plotting purposes. This 
expression is consistent with equations (29) and (2.10) since we are counting only 
transverse phonons here. 

Regarding the low-temperature regime, figure 6(b) shows that the exponential 
onset of the inter-sheet Umklapp contribution may or may not be apparent, depending 
on the value of x through the intraband crossover parameter a (equation (3.14) and 
table 1). The T3 asymptote approached as T 3 0 is given by a combination of 
equations (3.9) and (3.11). 

Although this clearly suggests that a T2 regime should be observable 
experimentally, more quantitative discussion should be deferred until after corrections 
are taken into account 

4. Colreetions due to V'( G)  

Corrections due to the momentum dependence of the form factor are relatively 
unimportant in the low-temperature limit, where they simply increase the coefficient 
of T? somewhat, but potentially very important for T > TI,  because they contribute 
here as and therefore may change the shape of T- ' (  I?, T). Therefore let us 
first address the T > T, regime with a I-OPW treatment parallel to that of section 2. 

or 
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The desired matrix element is obtained by considering equation (3.1) far from 
zone boundaries in the Umklapp gecmetry, where it reduces to equation (3.2) with 
mixing coefficient factors set to unity. Again counting only transverse phonons, 

IM&I~ = CiePa. G I ~ I V ( G )  t ( q .  G)V'(G)I~  
T T 

= (1-r2)G2{VZ(G)+2q+V(G)V'(G)+q2+Z[V'(G)]2} (4.1) 

where z s (6. 6). 'R, obtain the point d F ( k , w )  function, we integrate over 
the Umklapp circular region in figure 3, with results similar to equation (2.26) but 
mnsiderably more complicated. These results must then be averaged over an orbit 
segment y to obtain a 2 F ( y , w ) .  The details will not be presented heret. The 
important points are that the cross-term, being an odd function of r, has a small 
(though non-vanishing) angular average, and contributes much less than the other 
terms for all w (and T). The remaining correction term, when averaged over an 
orbit segment y, again has a remarkably simple form for w < n,, although not so 
simple above this. The result, denoting corrections by the prefix 6, is 

(4.2) 6 a 2 F ( y , w )  = ~ ( 8 ~ 2 h p ~ F ~ Q Q Z ) - ' G 2 [ V ' ( G ) ] 2  min[w3, p ( w ) ]  

where 

p ( w )  = aznzwQZ + a,n; (4.3a) 

a, = $SinZ)(, = 1 - au (4.36) 

so that the crossover from w3 to the second-degree polynomial p ( w )  occurs at 
w = 0,. As before, n2/q = Qz = 4""" in figure 3(b). 

The w > Q2 behaviour has been simplified, in keeping with the treatment of 
section 2, by using the functional form associated with the full Debye approximation 
cL = 9. This simplifies a2 and au, and eliminates an unimportant mrrection term, 
which vanishes at w = n2. 

The generalization of equation (4.2) to a full orbit average in the form of equation 
(2.6) is 

&*F( r , w )  = &(8r2hpv&Q,)-' m s e c ( 2 ~ ~ ) G ~ [ V ' ( G ) ] ~  min[w3, p ( w ) ] .  
G 

(4.4) 

It is understood that the min function is to be averaged over the two $2, values, if 
these differ. 

For the Iowa limit, let us return to equation (3.2) and mnsider the correction 
term 6MCk,. In the limit as q - 0, we have ( a ' p t p ' a )  -+ Ltsgn(V(G))(++1)-1/2 
(independent of q), where 17 is defined by equation (3.3) and & refers to the upper 
(lower) of the hvo bands split by V(G). The resulting correction to equation (3.4) is 

l i i  6M&, = fsgn(V(G))(Cq,, . G ) ( q .  G)V'(G)(q2 t l)-'/2. (4.5) 
q-U 

t Available from the author at the permanent address listed are details of derivations not presented in 
the text, series expressions for the scattering rate, and computer mde Lo evaluate these expressions. 
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The angular dependences of M and 6 M  are identical; their ratio is simply 

Iim(6M&/M&) = e($ + 1)'12 (4.64 
q-U 

where 

E = &4mV'(G)sgn(V(G))/hZG (4.66) 

is a dimensionless measure of the importance of the correction. The total point a2F 
functioa is (recalling that q = y sin x) 

lim a 2 F ( k , w )  = lim aZF(U)(b,w)[l+c(l+y2sinX,) 112 ] 2 (4.7) 
W - 0  W-U 

where the superscript (0) denotes the uncorrected a2F of equation (3.8). This is 
equivalent to the result derived by WB; equation (3.8) makes the result more explicit. 
For the orbit average we expand the square and obtain three integrals of the type 
encountered in section 3. The corrected a Z F ( r , w )  is given by equation (3.11) with 
I$) replaced by (I$) + 2c@ + E * @ ) ,  and the @) given by equation (3.12) and 
table 1. 

In order to interpolate through the w - Ol region, note first that the term 
quadratic in V'(G) (the c2r(d) term) has a significant 1-oPW counterpart to interpolate 
with, whereas the linear term does not. It seems appropriate, therefore, to absorb the 
linear term in the zeroth-order interpolation described in section 3. The only effect 
of this is to change the crossover parameter a of equation (3.14) to 

(4.8) a (1) )I -1. 

For the term quadratic in V'(G) we parallel the treatment of the zeroth-order 
term in section 3. In this case, the frequency dependences at low, intermediate 
and high frequencies are w2, w3 and (w2 + constant), respectively. The intraband 
contribution near w a1 is therefore the greater of the w2 and w3 forms, as shown 
in figure 7, and the formal expression (including the sum over all vertices of the orbit) 
is 

6a2F(r,  w )  = j(8x2hpv&Q,)-' 

- 

cosec(2xG)G2[V'( G)]' 
G 

x {e(w - QI)min[w3,p(w)l + med[bfilwZ,w3,p(w)]) (4.9) 

where med( a, p ,  y) takes on the value of its median argument. Again it is understood 
that the min and med functions are averaged over the two d u e s  of C12 associated with 
a particular vertex, if these are different. The lower intraband crossover frequency 
bfi, is determined by equating the low-frequency form (the e21,$ term) with half of 
the high-frequency form (equation (4.4)), with the result 

6 = Y I E )  sin xc . (4.10) 
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Figure 7. Corrections to o Z F ( T , w )  due U) the ngum 8. Correction U) the scattering rate 
momentum dependence of the form faclor. n r e e  normalized to BT'lcra (qualion (4.11)). For 
regimer are &dent as in figure 5. m e  h k e n  line T > TI the shape of these plow scales horizontally 
indicates the wz asymptote at large w. with TI, which here is se1 to 1OTl. 

The resulting correction to the scattering rate, 67-l(I', T), is plotted in figure 8 
for TJT, = 10 and several values of the vertex half-angle x, which determines both 
or, and b (table l), whose effects are Seen at high and low temperatures, respectively. 
The high-temperature asymptotic behaviour to which this plot refers is 

with the vertical axis scaled so that the CUN~S approach a constant, a,, at high 
temperatures. Full curves cover the expected range of values of x (and a,, table 1); 
the broken curve corresponds to a2 = 1 and is included only for reference. It is 
striking that an approximately T3 dependence (arising from the large-w behaviour of 
6 d F )  persists down to T - T2/3, well into the (nominal) intermediate regime. 

The transient T4-liie behaviour Seen at lower temperatures reflects the 
intermediate asymptotic form analogous to equation (3.15), 

C p  E lim 6T-'(r,T) = ~ r r 3 N G ( 8 h p v F ~ Q y ) - 1 c o ~ e ~ ( 2 ~ G ) C 2  
TI-U 
T*-CO 

x ~ v w ~ i ~ ( w f i ) ~  (4.12) 

where again NG is the number of (assumed equivalent) vertices. The crossover 
between the approximate T4 and T3 behaviours may be located (at - T,/3) by 
equating equations (4.11) and (4.12), ignoring the or, factor (whose effect is seen to 
be important only above this point) and recalling (equation (1.8)) that a, = kBT,/h. 
Moreover, as these formulae suggest, the overall shape of these curves, for T 2 T,, 
scales horizontally with T,. This shape is determined by the cusp in 6 a Z F ( r , w )  at  
w = S2, (equation (4.9) and figure 7). The most crucial parameters governing 67-1 
are T, and the overall magnitude [V'( G)],. 
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5. Result5 

We are now in a position to ask under what conditions a Tz contribution may be 
observable in the total scattering rate. A useful parameter for characterizing the 
importance of the contribution due to V'(G) is the ratio R of the and P 
asymptotic forms (equations (4.12) and (3.15)) evaluated at TI: 

where equations (1.7), (1.8) and (4.66) were used to obtain the second expression. 
According to this definition the temperature Tx at which the two asymptotic forms 
would make equal contributions to the total rate is 

Tx = TI R-'/'. (5.2) 

Since R is typically found between 0.1 and 0.2t, T, is roughly double to triple TI. 
This suggests that the V'(G) contribution will almost always be significant in the 
regime where 7? dependence is expected. It also suggests that if T2 5 3T, this 
contribution will appear to be predominantly cubic, since the crossover from to 

dependence will then occur at or below T,. 
The total scattering rate, computed from equation (1.1) using the corrected a2F 

(the sum of equations (3.13) and (4.9)), is plotted in figures 9(a)-(d). Uncorrected 
results corresponding to R = 0, similar to those of figure 4, are shown as broken 
curves. b l u e s  of both R and the vertex half-angle x represent the range of values 
likely to be found in the simple metalst. The value of x determines the other 
geometrical parameters a, b and a2 (table I), of which only a2 has a large effect for 
T > TI. The values of TJT,, which can vary more widely, are chosen to indicate 
the range over which a P-like contribution is apparent. 

The most surprising result is the robustness of an apparent T2-like contribution 
outside of its expected regime (T1 < T < T2) when T,/T, is not very large. There is 
a wide range of parameters where 7-l appears to be a combination of approximate T2 
and T3 dependences over a significant temperature interval above TI. The apparent 
P contribution may be identified as the intercept obtained by extrapolating to T = 0 
the linear portion of the curve (if it exists) beginning slightly above TI. This intercept 
is sometimes close to the ideal one (unity on these plots) and sometimes less. Both 
the magnitude and temperature range of the apparent P contribution are helped by 
large TJT, when R is very small, and not so large T,/T, when R is in the range 
0.1-0.2, as is more likely the case. 

The strength of the cubic contribution (the slope of the CUIV~S in figure 9) is 
proportional to both R and the ratio T,/T,. This may be understood simply by 
forming the ratio of asymptotic forms given by equations (4.11) and (3.15): 

BT 28a2 
A (5.3) 

The negative curvature associated with smaller values of x (or cy2) simply reflects the 
negative slope seen in figure 8 for T 2 TJ3. The transitional T4 dependence of 

t Representative of orbils found in A, In, Cd and Mg. 
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0 2 4 6 8 0 2 4 8 8 to  

T/Tt T/T I 

0 2 4 6 8 0 2 1 8  8 LO 

T/TI T/Ti 
F4w~gurr 9. (uHd) lbtal scattering rate normalized to AT2 (equation (3.15)) show a 
variety of noncubic behaviour Ior T > TI. Within the apccted range of parameters 
R$O.2 ai!d 25" 5 x 6 4Q', Ulen b a mnsidmble  m g c  of %/TI values for which 
a oontnbution IS apparent a b e  TI. Bmken C U N ~  m m p o n d  to R = 0. 

6r-' expected for T 5 TJ3 is evident in figure 9 in the form of positive curvature 
only for small R and very large Tz/Tl. 

An important p i n t  regarding the experimental observation of non-cubic 
temperature dependence stems from the fact that 7 - I  can be resolved (using RFSE or 
surface Landau level resonance (SLL) techniques) typically only up to about 540% of 
the Debye temperature 0,. So one may not actually be able to explore the T 2 TI 
regime in many orbits, since this would seem to require TI 5 0,/50. In contrast, 
the T < TI regime will be accessible on most if not all orbits studied. In this regime, 
the present model predicts a possible exponential behaviour in addition to the cubic, 
as shown in figure 6(b). An example of this is provided by Cd (Jaquier et a1 1991), 
in which both regimes have been observed for orbits on the first and semnd zones, 
but only T < TI for third-zone orbits. 

5.1. Further cowectwm 

The importance of the contribution from V'(G) seen in figure 9 raises the question 
why it is sufficient to treat the momentum dependence of the pseudopotential form 
factor V(q) hy a nylor expansion about p = G to only first order, as was done 
in equation (4.1). This may be addressed by showing that the next term, involving 
VN(G), is unimportant for temperatures not too far above TI. The reason for this 
is that 
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(since G typically lies close to the zero of V(q) ,  where IV‘(q)l is relatively 1arge)t. 
So temperature-dependent corrections entering with [V”(G)]’ occur on the scale 
of OD, while those with [V’(G)I2 occur on the much smaller scale T, T, as 
seen above. The only remaining potentially important effect of V”( G) is to change 
the magnitude (not the temperature dependence) of the correction associated with 
[V’(G)]*. This occurs through a cross-term in the generalized equation (4.1), whose 
effect on final results (equations (4.9), (4.11) and (4.12)) may be expressed through 
the replacement 

[V’(G)]’- [V’(G)]’+ZV(G)V’’(G). (5.5) 

This correction could become important if IV’(G)l happened to be very small. 
Other corrections to the temperature dependence of r-* arise from phonon 

dispersion (i.e. departures from the generalized Debye model wed here) and of 
course the Debye cut-off. Although the latter could be incorporated trivially in the 
present model, its effect is negligible at temperatures where r-* can be resolved 
experimentally. 

6. Coneiusions 

The foregoing results (summarized by equations (Ll), (3.13) and (4.9) as illustrated 
by figure 9) should be useful for predicting or interpreting both experimental data 
and full microscopic theoretical calculations. It seems clear from figure 9 that 
comparing experimental data with these results (which in principle have no adjustable 
parameters) can be much more informative than fitting to power laws or to polynomial 
forms such as A, + A 2 F  + A3T3, where the interpretation may be ambiguous (see 
particularly the discussion in section 1 and Jaquier d a1 (1991)). Specific applications 

(1991). A microscopic calculation for Cd by Chen er a1 (1992) confirms the existence 
of the contribution. 
Applications to AI for both points and orbit averages will he reported later in this 
journal. 

- of this formalism have been made in Cd by Lawrence et a1 (1986) and by Jaquier et a1 

regime predicted for orbital averages, in addition to a 
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t n e s e  conditions are verified m the cases mentioned. Only the smallest IV(G)l, which easily salisty 
the first mndition. admit experimentally observable regimes T > TI where momentum dependence of 
V(q)  is mmt imponant. 
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